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Abstract
If the time evolution of an open quantum system approaches equilibrium in
the time mean, then on any single trajectory of any of its unravellings the
time-averaged state approaches the same equilibrium state with probability 1.
In the case of multiple equilibrium states, the quantum trajectory converges in
the mean to a random choice from these states.

PACS numbers: 02.50.Ga, 02.70.Lq, 03.65.Bz, 42.50.Lc

1. Introduction

Stochastic Schrödinger equations and their solutions, quantum trajectories, have been
extensively studied in the last 15 years (cf [Car, GaZ]). They provide insight into the behaviour
of open quantum systems and they are invaluable for Monte Carlo simulations of the time
evolution of such systems, in particular for the numerical determination of equilibrium states.

In performing such simulations one is confronted with the problem of whether it is
necessary to average over many trajectories, or if it suffices to calculate the time average over
a single trajectory, which is often more convenient (cf [GaZ]).

In this paper, we prove that for any finite-dimensional quantum system and for any initial
state the time average of a single quantum trajectory converges to some equilibrium state with
probability 1. This result holds true despite the fact that the quantum trajectory itself may stay
away from equilibrium forever.

In the simple case, in which there exists only one equilibrium state, the above result implies
that the path average converges to this particular state, almost surely and independently of the
starting point chosen. So in one sense the quantum trajectory is ergodic in this case: the path
average of any observable of the quantum system equals its expectation in the equilibrium
state. However, when looked upon as a classical stochastic process with values in the space
of all quantum states, the quantum trajectory need not be ergodic, even in this simple and
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11890 B Kümmerer and H Maassen

well-behaved case: there may be disjoint regions in the space of all quantum states between
which no transitions are possible.

In a previous paper [KüM] we have considered the ergodic properties of the observed
output of open quantum systems. We found that quantum systems with finite-dimensional
Hilbert spaces and unique equilibrium states lead to ergodic observations. Strangely enough,
the techniques needed to prove our present result seem to be entirely different from those used
in that paper. Here we make effective use of martingales, which have been introduced to this
context in [Bel]. As in [KüM] we concentrate on jump processes in continuous time using
the formulation of Davies and Srivinas [Dav, SrD]. But the result also holds for diffusive
Schrödinger equations and for quantum evolutions in discrete time, as they occur in repeated
measurement situations like the micromaser [WBKM].

The paper is organized as follows. We formulate our result in section 2 and introduce
the necessary martingales in section 3. In section 4 the proof of the theorem is given. It is
extended to the diffusive and discrete time cases in sections 5 and 6, respectively.

2. The main result

The state of an open quantum system is described by a density matrix ρ on a finite-dimensional
Hilbert space H, obeying a master equation ρ̇ = Lρ, where L is a generator of Lindblad form
[Lin],

L(ρ) = i[H, ρ] +
k∑

i=1

ViρV ∗
i − 1

2 (V ∗
i Viρ + ρV ∗

i Vi).

Here H,V1, . . . , Vk are linear operators on H, H being self-adjoint.
Conservation of normalization of ρ is expressed by the relation

Tr L(ρ) = 0 for all ρ. (2.1)

We consider a decomposition of the generator

L = L0 +
k∑

i=1

Ji, (2.2)

such that etL0 , t � 0, and Ji, i = 1, . . . , k, are completely positive. A natural choice is
Ji(ρ) = ViρV ∗

i . Such a decomposition may be interpreted as follows. The open system is
under continuous observation by use of k detectors. The reaction of the detectors to the system
consists of clicks at random times. The evolution ρ �→ etL0(ρ) denotes the change of the state
of the system under the condition that during a time interval of length t no clicks are recorded.
The operator ρ �→ Ji(ρ) on the state space describes the change of state conditioned on the
occurrence of a click of detector i.

So, if ρ describes the state of the system at time 0, and if during the time interval [0, t]
clicks are recorded at times t1, t2, . . . , tn of detectors i1, i2, . . . , in respectively, and no more,
then, up to normalization, the state at time t is given by

ϑt((t1, i1), . . . , (tn, in)) = e(t−tn)L0Jin e(tn−tn−1)L0 · · · e(t2−t1)L0Ji1 et1L0(ρ). (2.3)

The probability density for these clicks to occur is equal to the trace of ϑt in (2.3). We shall
denote the normalized density matrix ϑt/Tr(ϑt ) by �t .

We imagine the experiment to continue indefinitely. The observation process will then
produce an infinite detection record ((t1, i1), (t2, i2), (t3, i3), . . .), where we assume that
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0 � t1 � t2 � t3 � · · · , and limn→∞ tn = ∞ (i.e., the clicks do not accumulate). Let
� denote the space of all such detection records with Lebesgue measure

dω =
∞∑

n=0

k∑
i1=1

· · ·
k∑

in=1

dt1 · · · dtn.

As was shown in [KüM], each initial state ϑ0 determines a probability measure P
ϑ0 on �

whose restriction to the time interval [0, t] has density Tr(ϑt ) as described above. We may
consider (�t)t�0 as a stochastic process on this probability space taking values in the density
matrices. A path of this process is called a quantum trajectory. We thus obtain an unravelling
of the state at time t � 0:

Tt (ϑ0) := etL(ϑ0) =
∫

�

�t(ω)Pϑ0(dω) = E
ϑ0(�t). (2.4)

So far the framework is essentially the same as described in our previous paper [KüM]. It
is the framework frequently used in computer simulations (cf, e.g., [Car, GaZ]). If one is only
interested in the average evolution etL, then the decomposition (2.2) can be chosen at will.

We now address the question, what can be said about the asymptotic behaviour of each
single quantum trajectory (�t(ω))t�0.

Let us denote by E the space of equilibrium states, i.e. density matrices ρ which are left
invariant by the average evolution Tt . Since the Hilbert space is finite dimensional the limit

P(ϑ) = lim
t→∞

1

t

∫ t

0
Ts(ϑ) ds (2.5)

exists and projects any density matrix ϑ onto the space E of equilibrium states.

Theorem 1. Suppose that Tt = etL has only a single equilibrium state ρ. Then for every
initial state ϑ0 the quantum trajectory (�t)t�0 satisfies

lim
t→∞

1

t

∫ t

0
�s(ω) ds = ρ,

for almost all ω with respect to the probability measure P
ϑ0 .

More generally, in the case where there is more than one equilibrium state, one has almost
surely

lim
t→∞

1

t

∫ t

0
�s(ω) ds = �∞(ω),

where �∞ is a random variable, depending on the initial state ϑ0, and taking values in the
equilibrium states. The expectation of �∞ is P(ϑ0).

The proof of this theorem is inspired by the arguments leading to Breiman’s strong law
of large numbers for Markov chains [Bre] (see also [Kre]), which however does not apply
directly to the situation of continuous time quantum trajectories. Our proof, based on the
martingale convergence theorem (section 3), will be given in section 4. In our discussion we
make free use of standard stochastic notation and arguments for which we refer, e.g., to [Doo,
vKa, ChW].

3. Martingales

The process (�t)t�0 consists of smooth evolution according to etL0 interrupted by jumps of
different types i = 1, . . . , k, namely �t �→ Ji�t/Tr(Ji�t). Let Ni(t) denote the number
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of jumps of type i before time t. In the theory of point processes [Ram, vKa, Bar] it is well
known that, from the probability density (2.3), it follows that the unconditioned probability
density of the occurrence of a jump of type i at time u, given the state �s at time s is

Tr(Tt−uJiTu−s(�s)) = Tr(JiTu−s(�s))

for t � u � s � 0, independent of t � u. Let E
ϑ0
s denote expectation with respect to P

ϑ0 ,
given the process up to time s.

In a similar way as (2.4) follows from (2.3), it is easy to show that Tu−s(�s) = E
ϑ0
s (�u),

and therefore

E
ϑ0
s

(
Ni

t − Ni
s

) =
∫ t

s

Tr(Tt−uJiTu−s(�s)) du = E
ϑ0
s

(∫ t

s

Tr(Ji(�u)) du

)
.

If we now denote by Ñ i
t the process

Ñ i
t := Ni

t −
∫ t

0
Tr Ji(�u) du,

then Ñ i
t is a martingale [Doo], i.e., for all 0 � s � t ,

E
ϑ0
s

(
Ñ i

t

) = Ñ i
s .(

Ñ i
t

)
t�0 is the compensated number process of jumps of type i.

Lemma 2. The quantum trajectory (�t)t�0 satisfies the stochastic Schrödinger equation
[Car, BGM]

d�t = L(�t) dt +
k∑

i=1

(
Ji(�t)

Tr(Ji(�t))
− �t

)
dÑ i

t , (3.1)

where the stochastic differential equation is interpreted in the sense of Itô [ChW].

Proof. Between jumps ϑt evolves according to d
dt

ϑt = L0(ϑt ), at a jump of type i it jumps
from ϑt to Ji(ϑt ). It follows that the normalized state �t = ϑt/ Tr(ϑt ) satisfies

d�t = d

dt

(
ϑt

Tr(ϑt )

)
dt +

k∑
i=1

(
Ji(�t)

Tr(Ji(�t))
− �t

)
dNi

t .

Since between jumps we have

d

dt

(
ϑt

Tr(ϑt )

)
= L0(ϑt )

Tr(ϑt )
− ϑt · Tr(L0(ϑt ))

Tr(ϑt )2
= L0(�t) − �t · Tr(L0(�t))

and since dNi
t = dÑ i

t + Tr(Ji(�t)) dt , we have, using that Tr ◦L = 0,

d�t = (L0(�t) − �t · Tr L0(�t)) dt +
k∑

i=1

(
Ji(�t)

Tr(Ji(�t))
− �t

)
· (

dÑ i
t + Tr(Ji(�t)) dt

)
=

(
L0 +

k∑
i=1

Ji

)
(�t) dt − �t · Tr

((
L0 +

k∑
i=1

Ji

)
(�t)

)
dt

+
k∑

i=1

(
Ji(�t)

Tr(Ji(�t))
− �t

)
· dÑ i

t = L(�t) dt +
k∑

i=1

(
Ji(�t)

Tr(Ji(�t))
− �t

)
dÑ i

t . �

The process �t starts at �0 = ϑ0. Let us now consider two other stochastic processes

Mt := �t − ϑ0 −
∫ t

0
L(�s) ds =

∫ t

0

k∑
i=1

(
Ji(�s)

Tr Ji(�s)
− �s

)
dÑ i

s (t � 0),
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and

Yt :=
∫ t

1

1

s

k∑
i=1

(
Ji(�s)

Tr Ji(�s)
− �s

)
dÑ i

s =
∫ t

1

1

s
dMs (t � 1).

From the fact that Ñ i
t is a martingale, it follows that these processes are martingales as well

[ChW]. We now come to the main result of this section.

Proposition 3. For any initial state ϑ0 the quantum trajectory (�t(ω))t�0 satisfies

lim
t→∞

1

t

∫ t

0
L(�s(ω)) ds = 0

almost surely with respect to P
ϑ0 .

Proof. Let us first consider the martingale Yt which takes values in the self-adjoint matrices.
In order to conclude from the martingale convergence theorem [Doo] that (Yt )t�0 converges
almost surely, we show that E

ϑ0
(

Tr
(
Y 2

t

))
remains bounded.

Denote the coefficient
(

Ji (�t )

Tr Ji (�t )
− �t

)
by Xi

t . Then

dYt =
k∑

i=1

1

t
Xi

t dÑ i
t .

By the Itô rules for jump processes [ChW] dÑ i
t dÑ

j
t = dNi

t dN
j
t = δij dNi

t , we find that

(dYt )
2 = 1

t2

k∑
i=1

k∑
j=1

Xi
t X

j
t dÑ i

t dÑ
j
t = 1

t2

k∑
i=1

(
Xi

t

)2
dNi

t .

From d
(
Y 2

t

) = 2Yt dYt + (dYt )
2 and E

ϑ0
(
dÑ i

t

) = 0, hence E
ϑ0(Tr(Yt dYt )) = 0, we obtain

E
ϑ0

(
d
(
Tr

(
Y 2

t

))) = E
ϑ0(Tr((dYt )

2)). Therefore, since E
θ0
(
dNi

t

) = E
θ0(Tr Ji(�t)) dt ,

dE
ϑ0

(
Tr

(
Y 2

t

)) = E
ϑ0(Tr((dYt )

2)) = 1

t2

k∑
i=1

E
ϑ0

(
Tr

((
Xi

t

)2) · Tr(Ji(�t))
)

dt

hence

E
ϑ0

(
Tr

(
Y 2

t

)) =
∫ t

1

1

s2

k∑
i=1

E
ϑ0

(
Tr

((
Xi

s

)2) · Tr Ji(�s)
)

ds � 4
k∑

i=1

‖Ji‖.

In this sense, (Yt )t�1 is L2-bounded and it follows that Yt converges almost surely to some
random variable Y. In particular, since Yt is continuous up to finitely many jumps on compact
time intervals and has a limit as t → ∞ almost surely, it is bounded almost surely. Therefore,
applying the partial integration formula, which is also valid if Yt has jumps, we obtain for
t � 1

Mt = M1 +
∫ t

1
s dYs = M1 + sYs |t1 −

∫ t

1
Ys ds = M1 + tYt −

∫ t

1
Ys ds,

therefore,

lim
t→∞

1

t
Mt = lim

t→∞
1

t
M1 + lim

t→∞ Yt − lim
t→∞

1

t

∫ t

1
Ys ds

= 0 + Y − Y

= 0.

We thus conclude that

lim
t→∞

1

t

(
�t − ϑ0 −

∫ t

0
L(�s) ds

)
= 0.

As (�t − ϑ0) remains bounded, the statement of the proposition follows. �
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4. Proof of the main result

We shall prove theorem 1 in two steps.

Step 1. If P is given as in (2.5), then for any initial state ϑ0 the limit

lim
t→∞ P(�t) =: �∞

exists almost surely with respect to P
ϑ0 , and satisfies E

ϑ0(�∞) = P(ϑ0).

Proof. Acting with the operator P on both sides of (3.1) in lemma 2 we see that
E

ϑ0(P (d�t)) = 0, hence (P (�t))t�0 is a martingale. Since it takes values in the states
it is bounded, and therefore it converges almost surely, say to the random variable �∞. The
expectation of �∞ is P(ϑ0), the initial value of the martingale (P (�t))t�0. �
Step 2. For any initial state ϑ0 we have, almost surely with respect to P

ϑ0 ,

lim
t→∞

1

t

∫ t

0
(�u − P(�u)) du = 0. (4.1)

Proof. First we show that, for all s � 0,

lim
t→∞

1

t

∫ t

0
(�u − Ts(�u)) du = 0. (4.2)

Indeed, since d
dv

Tv = TvL :∫ t

0
(Ts − id)(�u) du =

∫ t

0

∫ s

0
TvL(�u) dv du

=
∫ s

0
Tv

(∫ t

0
L(�u) du

)
dv.

Dividing by t and taking the limit t → ∞, we obtain (4.2) by proposition 3.
Clearly, averaging (4.2) over [0, s] preserves its validity:

lim
t→∞

1

t

∫ t

0

(
�u − 1

s

∫ s

0
Tv(�u) dv

)
du = 0.

In the above we want to take the limit s → ∞ before the limit t → ∞, in order to obtain the
statement (4.1) to be proved.

This is allowed since H is finite dimensional. Then for ε > 0 there exists s > 0 such that∥∥ 1
s

∫ s

0 Tv dv − P
∥∥ < ε

2 , hence∥∥∥∥1

s

∫ s

0
Tv(�u(ω)) dv − P(�u(ω))

∥∥∥∥ <
ε

2
,

uniformly in u. For P
ϑ0 , almost every ω ∈ �, we find t0 such that for t > t0∥∥∥∥1

t

∫ t

0

(
�u(ω) − 1

s

∫ s

0
Tv(�u(ω)) dv

)
du

∥∥∥∥ <
ε

2
.

Then, we obtain for such t∥∥∥∥1

t

∫ t

0
(�u(ω) − P(�u(ω))) du

∥∥∥∥
=

∥∥∥∥1

t

∫ t

0

(
�u(ω) − P(�u(ω)) +

1

s

∫ s

0
Tv(�u(ω)) dv

− 1

s

∫ s

0
Tv(�u(ω)) dv

)
du

∥∥∥∥ �
∥∥∥∥1

t

∫ t

0

(
�u(ω) − 1

s

∫ s

0
Tv(�u(ω)) dv

)
du

∥∥∥∥
+

∥∥∥∥1

t

∫ t

0

(
1

s

∫ s

0
Tv(�u(ω)) dv − P(�u(ω))

)
du

∥∥∥∥ <
ε

2
+

ε

2
= ε. �
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5. Diffusive quantum trajectories

The ergodic result obtained above is not confined to jump processes. Solutions of the master
equation ρ̇ = Lρ with

L(ρ) = i[H, ρ] +
k∑

j=1

VjρV ∗
j − 1

2
(V ∗

j Vjρ + ρV ∗
j Vj )

can alternatively be unravelled into a diffusion �t on the state space, satisfying the stochastic
differential equation [Bel, Car, BGM],

d�t = L(�t) dt +
k∑

i=1

Xi
t dW̃ i

t ,

where

Xi
t = �tV

∗
i + Vi�t − Tr(�tV

∗
i + Vi�t) · �t

and

dW̃ i
t = dWi

t − Tr(�tV
∗
i + Vi�t) dt.

As usual, Wi
t , i = 1, . . . , k, denote pairwise independent real-valued Wiener processes. Such

‘state diffusions’ arise, for instance, in homodyne detection of the field strength of fluorescence
light [Car]. In this situation our main theorem takes the following form.

Theorem 4. We have almost surely

lim
t→∞

1

t

∫ t

0
�s(ω) ds = �∞(ω),

where �∞ is a random variable, depending on the initial state ϑ0 and taking values in the
equilibrium states. Again, the expectation of �∞ is Pϑ0.

Proof. We follow the same line of argument as for jump processes. Here we only discuss the
modifications needed for the diffusive case. We consider the stochastic processes (Mt)t�0 and
(Yt )t�1 given by

Mt := �t − ϑ0 −
∫ t

0
L(�s) ds =

∫ t

0

k∑
i=1

Xi
s dW̃ i

s ,

and

Yt :=
∫ t

1

1

s

k∑
i=1

Xi
s dÑ i

s =
∫ t

1

1

s
dMs.

As was shown in [Bel, BGM], these are martingales. Again E
ϑ0

(
Tr

(
Y 2

t

))
remains

bounded. Indeed dW̃ i
t dW̃

j
t = dWi

t dW
j
t = dt by the Itô rules and E

ϑ0
(
d
(
Tr Y 2

t

)) =
E

ϑ0
(
Tr

(
dYt

)2)
with(
dYt

)2 = 1

t2

k∑
i=1

k∑
j=1

Xi
t X

j
t dW̃ i

t dW̃
j
t = 1

t2

k∑
i=1

(
Xi

t

)2
dt,

so that

E
ϑ0

(
Tr Y 2

t

) =
∫ t

1

1

s2

k∑
i=1

E
ϑ0

(
Tr

(
Xi

s

)2)
ds � 4

k∑
i=1

‖Vi‖2.

The partial integration argument, which is also valid for diffusions, leads to proposition 3.
Steps 1 and 2 in the proof of the main result remain unchanged. �
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6. Quantum trajectories in discrete time

Our ergodic theorem also has a natural version in discrete time. Let us briefly sketch the
setting. A time evolution in discrete time is given by the powers of a completely positive
operator T with Tr ◦ T = Tr. A Kraus decomposition

T (ρ) =
k∑

i=1

ViρV ∗
i

of T leads to an unravelling of this time evolution. Let � be the set of all infinite sequences
(ω1, ω2, . . .) with ωj = 1, . . . , k. An initial state ϑ0 induces a probability measure P

ϑ0 on �

which is uniquely determined by the condition

P
ϑ0({ω ∈ � : ω1 = i1, ω2 = i2, . . . , ωn = in}) = Tr

(
Vin · · ·Vi1ϑ0V

∗
i1

· · · V ∗
in

)
.

Then an unravelling of the time evolution (T n)n�0 is given by the Markov chain (�n)n�0 on
(�, P

ϑ0) with

�n(ω) = Vin · · · Vi1ϑ0V
∗
i1

· · · V ∗
in

Tr
(
Vin · · ·Vi1ϑ0V

∗
i1

· · ·V ∗
in

) .

Theorem 5. As N → ∞, the averaged process

1

N

N−1∑
n=0

�n(ω)

converges P
ϑ0 almost surely to a random equilibrium state �∞ with expectation P(ϑ0).

The proof is a discrete version of the argument in the previous sections, which corresponds
to a variation on Breiman’s individual ergodic theorem for Markov chains [Bre, Kre].
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